xxxxxxxxxx
let convexhull = {
// Returns a new array of points representing the convex hull of
// the given set of points. The convex hull excludes collinear points.
// This algorithm runs in O(n log n) time.
makeHull: (points) => {
let newPoints = points.slice();
newPoints.sort(convexhull.POINT_COMPARATOR);
return convexhull.makeHullPresorted(newPoints);
},
// Returns the convex hull, assuming that each points[i] <= points[i + 1]. Runs in O(n) time.
makeHullPresorted: (points) => {
if (points.length <= 1)
return points.slice();
// Andrew's monotone chain algorithm. Positive y coordinates correspond to "up"
// as per the mathematical convention, instead of "down" as per the computer
// graphics convention. This doesn't affect the correctness of the result.
let upperHull = [];
for (let i = 0; i < points.length; i++) {
const p = points[i];
while (upperHull.length >= 2) {
const q = upperHull[upperHull.length - 1];
const r = upperHull[upperHull.length - 2];
if ((q.x - r.x) * (p.y - r.y) >= (q.y - r.y) * (p.x - r.x))
upperHull.pop();
else
break;
}
upperHull.push(p);
}
upperHull.pop();
let lowerHull = [];
for (let i = points.length - 1; i >= 0; i--) {
const p = points[i];
while (lowerHull.length >= 2) {
const q = lowerHull[lowerHull.length - 1];
const r = lowerHull[lowerHull.length - 2];
if ((q.x - r.x) * (p.y - r.y) >= (q.y - r.y) * (p.x - r.x))
lowerHull.pop();
else
break;
}
lowerHull.push(p);
}
lowerHull.pop();
if (upperHull.length == 1 && lowerHull.length == 1 && upperHull[0].x == lowerHull[0].x && upperHull[0].y == lowerHull[0].y)
return upperHull;
else
return upperHull.concat(lowerHull);
},
POINT_COMPARATOR: (a, b) => {
if (a.x < b.x)
return -1;
else if (a.x > b.x)
return +1;
else if (a.y < b.y)
return -1;
else if (a.y > b.y)
return +1;
else
return 0;
}
}